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Abstract

It can be shown that the that the Lipschitz constant for the radial
projection on the space Lp[0, 1] (and the sequences spaces `p) can be
calculated by a one-dimensional convex optimisation. In this note we
discuss some details of the implementation of a efficient Newton-Raphson
iteration for this optimisation.

In [5, Thms. 3, 5], Franchetti shows the the Lipschitz constant for the radial
projection of the (real) Banach space Lp[0, 1] is given by

max
m∈[0,1]

(
mp−1 + (1−m)p−1)1/p(

mp′−1 + (1−m)p′−1)1/p′

(1)

where 1/p+1/p′ = 1. He observes that the same value is found for the Lipschitz
constant of the space `2

p(R) ([5, Sect 5.], [4]). Given the isometries

`2
p(R) ⊆ `3

p(R) ⊆ · · · ⊆ `p(R) ⊆ Lp[0, 1]

it follows that the same holds for finite-dimensional spaces `n
p (R) (n = 2, 3, . . .)

and the sequence space `p(R), a fact which is useful in the calculation of the
`p → `q operator-norms of matrices; see, for example, [3]. We denote this value
by k(p) and observe that one can substitute the conjugate p′ in (1) to obtain
the equivalent form

max
v∈[0,1]

(
1 + vp−1)1/p(1 + v1/(p−1))(p−1)/p

1 + v

which we find more useful for our calculations.
Clearly it is the same to find the maximum of the pth power and then take

the pth root, so let x = p− 1 and write

f(v) =
(
1 + vx

)(
1 + v1/x

)x

(1 + v)x+1 = F (v)G(v)
H(v) . (2)

An obvious strategy is to take the derivative of f and seek its root. We quickly
find that

dF
dv = xvx−1,

dG
dv = v1/x−1(1 + v1/x

)x−1
,

dH
dv = (x+ 1)(1 + v)x
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Figure 1: The functions f(v, x) (left) and f(ux, x) (right) as described in the
text. In each case the horizontal ordinate is p = 1 − x and the vertical is
v, respectively u. The black line is the zero of the vertical derivative, so the
location of the maxima of the functions for fixed p.

and that the derivative of f ,

df
dv = FG′H + F ′GH − FGH ′

H2 ,

which has the numerator L(v)M(v), where

L(v) =
(
1 + vx

)x−1(1 + v1/x
)x
v−1

is non-zero, and M(v) is(
1 + vx

)
v1/x−1(1 + v) + xvx−1(1 + v1/x

)(
1 + v

)
− (x+ 1)

(
1 + vx

)(
1 + v1/x

)
which can be rewritten as

M(v) =
(
1 + vx

)(
v1/x − v

)
+ x
(
1 + v1/x

)(
vx − v

)
. (3)

One can find the solution of M(v) = 0 by bisection, substitute the result into
(2) and take the pth root to get the required maximum. This works well for x
which is not too close to zero or one (which is to say that p is not too close to
one or two), but is rather inefficient computationally and difficult to analyse as
x approaches zero. The reason for this is apparent when we plot f(v, x) for a
range of x as in the left frame of Figure 1. We see that there is a singularity as
the zero-locus of M as x approaches zero.

It is for this reason that we introduce a new variable u = v/x with respect
to which the function f appears much better behaved, see the right-hand frame
of Figure 1.

1 Newton-Raphson iteration
For x which is comfortably in the interior of [0, 1], the solution to M(v) = 0 in
u can be found rapidly by a Newton-Raphson iteration. Of course one needs
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the derivative of M and we record that this is(
x3 − p(xv − v1/x)

)
vx−1 +

(
1− p(xv − x2vx)

)
v1/x−1 − xp.

One also needs a good starting value for the iteration, and in our implemen-
tation we have used an order-nine Chebychev approximant of the zero locus of
M determined by the bisection method, the coefficients actually calculated by
the Chebfun package [1]. We find that this gives a starting value for the iter-
ation which no further that 10−3 from the root over the applicable range of x.
Moreover, the evaluation of the starting point from the Chebychev coefficients
is extremely rapid using the recursive evaluation method of Clenshaw [2] which
can be coded in a few lines of any language.

A more delicate matter is the stopping criterion for the iteration. In general
one would seek to terminate when the difference between consecutive estimates
of the zero (in other words δui = −M(ui)/M ′(ui)) is around machine epsilon
(εM) or a few multiples of it. The problem arises that, as x gets close to one,
the derivative of M become very small, and when it drops below εM we obtain
inaccurate values for δui. But this is a problem we can live with — a small
derivative for M near the zero means that we do not need to be that close to
the zero to obtain a sufficiently accurate estimate of the maximum of f ; the
problem is its own solution, if you will.

To quantify this idea, suppose that u is sufficiently close to the maximiser
u0 of f that it is well approximated by a quadratic,

f(u) ≈ f(u0)− α(u− u0)2

so that f(u0)−f(u) < ε if and only if |u− u0| <
√
ε/α. But f ′(u) = −2α(u−u0)

so |u− u0| = |f ′(u)| /2α and f ′′(u) = f ′′(u0) = 2α; thus f(u0)−f(u) < ε if and
only if

f ′(u) < 2
√
εα =

√
2ε |f ′′(u0)|.

Now, if f ′(u) = L(u)M(u) and L(u) is nonzero, then the assumption that f is
a quadratic implies already that L is a constant, so L(u) = L(u0), and likewise
M ′(u) = M ′(u0), so that we can write the above condition as

M(u) <

√∣∣∣∣2M ′(u0)
L(u0)

∣∣∣∣×√ε
The point is that we have (rather complicated) expressions for L and M and
we can already evaluate u0 by bisection, thus we can calculate the first factor
on right-hand side of the above for any x and then look for a simple function of
x which approximates it. Performing this calculation gives us the result shown
in Figure 2 and one can see that x(1 − x) is a reasonable order-of-magnitude
approximant.

Using this stopping criterion (alongside the more usual one on δui mentioned
above) and the Chebychev starting values leads to a Newton-Raphson iteration
of at most three steps (more often two or one) in all of the tests performed at
double precision (where machine epsilon is εM = 2.22×10−16).

2 Asymptotics for p near one
The numerous degeneracies for the maximisation problem for k(p) at p = 1 and
2 lead us to seek series expansions. We treat the p = 1 (so x = 0) case first.
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Figure 2: The quantity
√
|2M ′(u0)/L(u0)| in grey, and the function x(1 − x)

used to approximate it in red. The horizontal ordinate is x = p− 1.

We first find a series expression for the root of M(v), Equation 3, in terms
of the variable u,(

1 + (ux)x
)(

(ux)1/x − ux
)

+ x
(
1 + (ux)1/x

)(
(ux)x − ux

)
= 0.

We assume that for x sufficiently small we can neglect terms in (ux)1/x to obtain

ux
(
1 + (ux)x

)
+ x
(
(ux)x − ux

)
= (u− 1)(ux)x + u(x+ 1) = 0

and as (ux)x = 1 + x log ux+ 1
2 (x log ux)2 + · · · , we have

(u−1)(ux)x +u(x+ 1) = −1 +u
(
2 +x+x log ux+O

(
x2))− (x log ux+O

(
x2))

and setting this to zero gives

u =
1 + x log ux+O

(
x2)

2 + x+ x log ux+O
(
x2
)

and since neglecting terms in x gives u = 1/2, we take

u =
1 + x log x

2
2 + x+ x log x

2
(4)

as our approximation for the root of (3). Note that

u = 1
2

(
1 + x log x2

)(
1 +

(x
2 + x

2 log x2

))−1

= 1
2

(
1 + x log x2

)(
1−

(x
2 + x

2 log x2

)
+O

(
x2))

= 1
2

(
1 + x log x2 −

x

2 −
x

2 log x2 +O
(
x2))

= 1
2 −

x

4 + x

4 log x2 +O
(
x2) (5)

Our strategy is to substitute this expression into the pth root of the terms on
the right-hand side of (2), and so obtain a series for f(ux)1/p.
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First note that, using (5),

log ux = log x+ log
(

1
2 −

x

4 + x

4 log x2 +O
(
x2))

= log x− log 2 + log
(

1− x

2 + x

2 log x2 +O
(
x2))

= log x− log 2− x

2 + x

2 log x2 +O
(
x2)

using the Taylor expansion for log(1 + y) at y = 0, so

x log ux = x log x2 +O
(
x2)

and then

(ux)x = exp (x log ux)

= 1 + x log ux+ 1
2(x log ux)2 +O

(
x3)

= 1 + x log x2 +O
(
x2)

so
1 + (ux)x = 2 + x log x2 +O

(
x2) = 2

(
1 + x

2 log x2 +O
(
x2)) .

Now, using the notation of (2),

F (ux)1/(x+1) = 21/(x+1)
(

1 + x

2 log x2 +O
(
x2))1/(x+1)

where we have

21/(x+1)

= 2× 2−x/(x+1)

= 2
(

1−
(

x

x+ 1

)
log 2 + 1

2

(
x

x+ 1

)2
(log 2)2 − · · ·

)

= 2
(

1− x
(
1− x+O

(
x2)) log 2 + x2

2
(
1− x+O

(
x2))2 (log 2)2 − · · ·

)
= 2 (1− x log 2) +O

(
x2)

and (
1 + x

2 log x2 +O
(
x2))1/(x+1)

= 1 + 1
x+ 1

(x
2 log x2 +O

(
x2))+O

(
x3)

= 1 +
(
1− x+O

(
x2)) (x

2 log x2 +O
(
x2))+O

(
x3)

= 1 + x

2 log x2 +O
(
x2)

which we combine to give

F (ux)1/(x+1) = 2(1− x log 2)
(

1 + x

2 log x2

)
+O

(
x2)

= 2− 3x log 2 + x log x+O
(
x2) (6)
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The other terms in (2) are much easier to handle. We have

G(ux)1/(x+1) =
(

1 + (ux)1/x
)x/(x+1)

= 1 + x

x+ 1(ux)1/x + 1
2!

(
x

x+ 1

)(
x

x+ 1 − 1
)

(ux)1/x + · · ·

= 1 + x
(
1− x+ · · ·

)
(ux)1/x + 1

2
(
x− 2x2 + · · ·

)
(ux)1/x + · · ·

= 1 +O
(
x1+1/x

)
= 1 +O

(
x2) for x < 1, (7)

in other words, G is asymptotically constant. Finally

1/H(ux)1/(x+1) = (1 + ux)−1

=
(
1 + x/2 +O

(
x2))−1

= 1−
(
x/2 +O

(
x2))+

(
x/2 +O

(
x2))2 − · · ·

= 1− x

2 +O
(
x2). (8)

Combining (6), (7) and (8) then gives

f(ux)1/(x+1) =
(
2− 3x log 2 + x log x+O

(
x2))(1− x/2 +O

(
x2))

= 2− 3x log 2 + x log x− x+O
(
x2)

= 2− x+ x log x8 +O
(
x2). (9)

It is this estimate which we use in our implementation for very small values of
x = p − 1. Comparison of the estimate against the result obtained using the
bisection method in high-precision arithmetic suggests that for x < 10−9 the
relative error of the estimate is less than εM.

3 Asymptotics for p near two
Our estimate for k(p) for p near to two is much simpler than the corresponding
result near one. We first note from Figure 1 that as p− 1 = x→ 1 the function
f(v) becomes flatter and flatter and it is easy to see that the limit is the constant
one. Moreover, the zero locus (the position of the maximiser) seems to approach
a value, denoted ξ, slightly below 0.1. Following an argument suggested by Stack
Exchange Mathematics user Joriki (in question 144056) we can find the exact
value of ξ.

Let y = 1− x = 2− p > 0, then it is straightforward to calculate

(1 + vx)(v1/x − v) = v(v + 1) log(v)y
+ v log(v)

(
(v + 1)− 1

2 (v − 1)(log v)2)y2 +O
(
y3)

and

(1 + v1/x)(vx − v) = −v(v + 1) log(v)y
+ 1

2v(1− v)(log v)2y2 +O
(
y3)
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and, combining these, we obtain a series expansion for (3) for p close to 2,

(1 + vx)(v1/x − v) + x(1 + v1/x)(vx − v)
= v log(v)

(
2 + 2v + (1− v) log(v)

)
y2 +O

(
y3).

As y → 0 (i.e., as x→ 1) the root of the left-hand side must converge to a root of
the expression in parentheses on the right-hand side. Writing y = (α−1)/(α+1),
the latter becomes

2
α+ 1

(
2α+ log α− 1

α+ 1

)
,

and again, the root is the root of the parenthetic expression, namely

log α− 1
α+ 1 = −2α

leading quickly to coth(α) = α. This α = 1.19967874 . . . is a quantity related
the Laplace limit constant (see OEIS/A033259 and the references therein), and
this then gives

ξ = α− 1
α+ 1 = 0.090776278 . . .

Motivated by the apparent flatness to Figure 1, we take the line v = ξ as our
approximation for the zero locus close to x = 1, and in this case f(v) is, as a
function of x, really rather simple. We use a computer algebra system (YACAS)
to calculate its Taylor series at y = x− 1 = 2− p = 0 and find that

k(2− y) = 1 + 0.21961441994532257538y2

+ 0.21961441994532257538y3

+ 0.13751213124566818941y4 (10)

to order 4. The coefficients of the y2 and y3 in this expression appear (numeri-
cally) to be L2/2, where L is the Laplace limit constant.

Comparing the approximation (10) to the value obtained by bisection in
high-precision arithmetic we find that it has a relative error of less that εM for
y < 10−3.

4 Accuracy and efficiency
The algorithm discussed in this document have been implemented in C and
Matlab; and we here provide some details on the testing of the implementa-
tion. We generated three sets of values of k(p) for 10,000 values of p uniformly
distributed in the ranges 1 < p < 2, 1 < p < 1+2×10−9 and 2−2×10−3 < p < 2
respectively. Clearly the latter are used to inspect the series estimates described
in the sections above. We find, in comparison to the corresponding value cal-
culated by bisection in multiprecision arithmetic (to 50 significant figures) that
the algorithm has a relative error of less that 1.5εM for all values tested (and the
vast majority were less than εM). The plots of Figure 3 illustrate these results.

In terms of speed, we find an average time of 4µs is needed to evaluate k(p)
on a 2GHz Intel CPU.
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Figure 3: Accuracy of the implementation’s calculation of k(p) for various values
of p. All plots have vertical ordinate which is the relative accuracy in multiples
of machine epsilon εM = 2.22×10−16. The top plot shows the range 1 < p < 2;
the middle the range 0 < x′ < 2 where x′ = (p−1)×10−9; the bottom the range
0 < y′ < 2 where y′ = (2 − p)×10−3 (so that 1.998 < p < 2). The lower plots
show clearly the transition from Newton-Raphson to the series estimate.
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